SIFT Features

时间:2014-10-20 16:34:39   收藏:0   阅读:280

Scale Invariant Feature Transform (SIFT) is an approach for detecting and extracting local feature descriptors that are reasonably invariant to change in illumination, image noise, rotation, scaling, and small changes in viewpoint.

SIFT是一种可以检测并计算出对于在光照、图像噪点、旋转、缩放和视点变换时提取出不变的局部特征值的算法。

Detection stages for SIFT features:

SIFT特征值的计算步骤:

 

Scale-space extrema detection

 

 可能理解有误,有待后期确定!!具体参照SIFT进阶

 

 

  1. Local extrema detection, the pixel marked ‘x’ is compared against its 26 neighbours in a 3*3*3 neighbourhood that spans adjacent DoG images (from Lowe, 2004)
    1. 局部极值的检测,被标记为‘x’的像素会与其周围的26个像素比较。(即同层的8个像素,以及上下相邻的两层的一共18个像素比较。)
    2. If the pixel is a local maximum or minimum, it is selected as a candidate keypoint.
    3. 如果像素是局部的最大值或者最小值,则会被作为备选的特征值。

For each candidate keypoint:

对于每一个备选特征值来说:

To determine the keypoint orientation, a gradient orientation histogram is computed in the neighbourhood of the keypoint.

为了定位特征值的指向,会使用到一个计算出的周围特征值的变换指向直方图来表示。

Peaks in the histogram correspond to dominant orientations. A separate keypoint is created for the direction corresponding to the histogram maximum, and any other direction within 80% of the maximum value.

直方图中的峰值就是主方向,其他的达到最大值80%的方向可作为辅助方向。

All the properties of the keypoint are measured relative to the keypoint orientation, this provides invariance to rotation.

特征值的所有性质都与特征点的指向相关,这样对于旋转来说就是不变的了。

SIFT feature representation

 

Once a keypoint orientation has been selected, the feature descriptor is computed as a set of orientation histograms on 4*4 pixel neighbourhoods. The orientation histograms are relative to the keypoint orientation, the orientation data comes from the Gaussian image closest in scale to the keypoint’s scale.

如果一个关键点的指向选定之后,特征描述符就会按照一个邻近4×4像素的指向直方图来计算。指向直方图与关键点的指向相关,指向数据来源于高斯图像最接近关键点的尺度的那些值。

Just like before, the contribution of each pixel is weighted by the gradient magnitude, and a Gaussian with σ 1.5 times the scale of the keypoint.

与之前类似,每一个像素的影响是按照它的梯度的加权来的。

Histograms contain 8 bins each, and each descriptor contains an array of 4 histograms around the keypoint. This leads to a SIFT feature vector with 4*4*8 = 128 elements. This vector is normalized to enhance invariance to changes in illumination.

每个直方图有8方向的梯度方向,每一个描述符包含一个位于关键点附近的四个直方图数组。这就导致了SIFT的特征向量有128维。(先是一个4×4的来计算出一个直方图,每个直方图有8个方向。所以是4×4×8=128维)将这个向量归一化之后,就进一步去除了光照的影响。

 

SIFT feature matching

SIFT特征拟合

Recognition using SIFT features

使用SIFT特征值进行识别

原文:http://www.cnblogs.com/souxun2014/p/4037230.html

评论(0
© 2014 bubuko.com 版权所有 - 联系我们:wmxa8@hotmail.com
打开技术之扣,分享程序人生!