hdu 3555 Bomb ( 数位DP)
时间:2014-09-28 22:20:37
收藏:0
阅读:312
Bomb
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 7926 Accepted Submission(s): 2780
Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would
add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.
The input terminates by end of file marker.
The input terminates by end of file marker.
Output
For each test case, output an integer indicating the final points of the power.
Sample Input
3 1 50 500
Sample Output
0 1 15HintFrom 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499", so the answer is 15.
思路:
dp[i][0]表示不含49的个数 ;
dp[i][1]表示不含49且高位为9的个数;
dp[i][2]表示包含49的个数;
dp[i][0]=10*dp[i-1][0]-dp[i-1][1]; //不含49的数可以任意加10个数字,减去9前面加4的个数
dp[i][1]=dp[i-1][0]; //不含49的数最高位加9
dp[i][2]=dp[i-1][2]*10+dp[i-1][i]; //包含49的数字可以添加0~9,高位为9的可以加4;
dp[i][1]表示不含49且高位为9的个数;
dp[i][2]表示包含49的个数;
dp[i][0]=10*dp[i-1][0]-dp[i-1][1]; //不含49的数可以任意加10个数字,减去9前面加4的个数
dp[i][1]=dp[i-1][0]; //不含49的数最高位加9
dp[i][2]=dp[i-1][2]*10+dp[i-1][i]; //包含49的数字可以添加0~9,高位为9的可以加4;
#include"stdio.h" #include"string.h" #include"iostream" #include"algorithm" #include"math.h" #include"vector" using namespace std; #define LL __int64 #define N 25 LL dp[N][3]; void inti() { memset(dp,0,sizeof(dp)); dp[0][0]=1; int i; for(i=1; i<N; i++) { dp[i][0]=dp[i-1][0]*10-dp[i-1][1]; dp[i][1]=dp[i-1][0]; dp[i][2]=dp[i-1][2]*10+dp[i-1][1]; } } LL work(LL x) { int i,k,flag; int a[N]; LL ans; k=0; while(x) { a[++k]=x%10; x/=10; } a[k+1]=ans=flag=0; for(i=k; i>0; i--) { ans+=a[i]*dp[i-1][2]; if(flag) ans+=a[i]*dp[i-1][0]; else { if(a[i]>4) ans+=dp[i-1][1]; } if(a[i+1]==4&&a[i]==9) flag=1; // printf("%d\n",ans); } return ans; } int main() { int T; LL n; inti(); scanf("%d",&T); while(T--) { scanf("%I64d",&n); printf("%I64d\n",work(n+1)); } return 0; }
原文:http://blog.csdn.net/u011721440/article/details/39647143
评论(0)