python ThreadPoolExecutor线程池和ProcessPoolExecutor进程池

时间:2020-05-16 10:18:57   收藏:0   阅读:207

前言

Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间。但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。
相比 threading 等模块,该模块通过 submit 返回的是一个 future 对象,它是一个未来可期的对象,通过它可以获悉线程的状态主线程(或进程)中可以获取某一个线程(进程)执行的状态或者某一个任务执行的状态及返回值:

主线程可以获取某一个线程(或者任务的)的状态,以及返回值。
当一个线程完成的时候,主线程能够立即知道。
让多线程和多进程的编码接口一致。

线程池的使用

from concurrent.futures import ThreadPoolExecutor
import time


def task(i):
      time.sleep(i)
      print(f‘task{i} completed‘)
      pass

thread_executor = ThreadPoolExecutor(max_workers=7)  # 创建一个最大容纳数量为7的线程池
start = time.time()


task1 = thread_executor.submit(task, 0)
task1 = thread_executor.submit(task, 1)
task1 = thread_executor.submit(task, 2)
task1 = thread_executor.submit(task, 3)
task1 = thread_executor.submit(task, 4)
# 打印该任务是否执行完毕
print(task1.done())
# 只有未被提交的到线程池(在等待提交的队列中)的任务才能够取消
print(task3.cancel())
time.sleep(4)  # 休眠4秒钟之后,线程池中的任务全部执行完毕,可以打印状态
print(task1.done())

print(task1.result())  # 该任务的return 返回值  该方法是阻塞的。

thread_executor.shutdown(wait=True)
end = time.time()
print(f‘Time consuming {end - start}‘)
task0 completed
False
False
task1 completed
task2 completed
task3 completed
True
None
task4 completed
Time consuming 4.002375364303589

as_completed

map

from concurrent.futures import ThreadPoolExecutor
import time


def task(i):
      time.sleep(i)
      print(f‘task{i} completed‘)
      pass


thread_executor = ThreadPoolExecutor(max_workers=7)  # 创建一个最大容纳数量为7的线程池
start = time.time()

params = [i for i in range(5)]
thread_executor.map(task, params)

thread_executor.shutdown(wait=True)
end = time.time()
print(f‘Time consuming {end - start}‘)
task0 completed
task1 completed
task2 completed
task3 completed
task4 completed
Time consuming 4.002383232116699

ProcessPoolExecutor使用

ProcessPoolExecutor在使用上和ThreadPoolExecutor大致是一样的,它们在futures中的方法也是相同的,但是对于map()方法ProcessPoolExecutor会多一个参数chunksize(ThreadPoolExecutor中这个参数没有任何作用),chunksize将迭代对象切成块,将其作为分开的任务提交给pool,对于很大的iterables,设置较大chunksize可以提高性能。

原文:https://www.cnblogs.com/hziwei/p/12896856.html

评论(0
© 2014 bubuko.com 版权所有 - 联系我们:wmxa8@hotmail.com
打开技术之扣,分享程序人生!