Sklearn笔记:度量和评分

时间:2020-04-28 19:10:34   收藏:0   阅读:90

——————————————————————————————————————————————————————
原文:3.3. Metrics and scoring: quantifying the quality of predictions — scikit-learn 0.22.2 documentation

主要函数概览

技术分享图片

对应的数学公式(来源于:周志华《机器学习》)

\[准确率: {\rm{acc}}uracy = \sum\limits_{i = 1}^n {I({y_{true}} = {y_{pred}})} \]

概率校准与Brier分数 - stardsd - 博客园

\[Brie{r_{score}} = \frac{1}{N}\sum\limits_{t = 1}^N {({y_{true,t}} - {y_{pred,t}})} \]


技术分享图片

\[precision:P = \frac{{TP}}{{TP + FP}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {P_{{\rm{macro}}}} = \frac{1}{n}\sum\limits_{i = 1}^n {{P_i}} \]

\[recall:R = \frac{{TP}}{{TP + FN}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {R_{macro}} = \frac{1}{n}\sum\limits_{i = 1}^n {{R_i}} \]

\[{F_\beta }{\rm{ = }}\frac{{(1 + {\beta ^2})*P*R}}{{({\beta ^2}*P + R)}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {F_{\beta {\rm{ - macro}}}} = \frac{{(1 + {\beta ^2})*{P_{macro}}*{R_{macro}}}}{{({\beta ^2}*{P_{macro}} + {R_{macro}})}} \]

技术分享图片
技术分享图片
技术分享图片
技术分享图片

聚类评价指标 - 知乎

原文:https://www.cnblogs.com/B-Hanan/p/12790934.html

评论(0
© 2014 bubuko.com 版权所有 - 联系我们:wmxa8@hotmail.com
打开技术之扣,分享程序人生!