keras EfficientNet介绍,在ImageNet任务上涨点明显 | keras efficientnet introduction

时间:2019-12-04 09:03:28   收藏:0   阅读:190

本文首发于个人博客https://kezunlin.me/post/88fbc049/,欢迎阅读最新内容!

keras efficientnet introduction

Guide

About EfficientNet Models

技术分享图片
技术分享图片

compared with resnet50, EfficientNet-B4 improves the top-1 accuracy from 76.3% of ResNet-50 to 82.6% (+6.3%), under similar FLOPS constraint.

Using Pretrained EfficientNet Checkpoints

技术分享图片

Keras Models Performance

The input size used was 224x224 for all models except NASNetLarge (331x331), InceptionV3 (299x299), InceptionResNetV2 (299x299), Xception (299x299),
EfficientNet-B0 (224x224), EfficientNet-B1 (240x240), EfficientNet-B2 (260x260), EfficientNet-B3 (300x300), EfficientNet-B4 (380x380), EfficientNet-B5 (456x456), EfficientNet-B6 (528x528), and EfficientNet-B7 (600x600).

notice

Top-1 Top-5 10-5 Size Stem References
VGG16 28.732 9.950 8.834 138.4M 14.7M [paper] [tf-models]
VGG19 28.744 10.012 8.774 143.7M 20.0M [paper] [tf-models]
ResNet50 25.072 7.940 6.828 25.6M 23.6M [paper] [tf-models] [torch] [caffe]
ResNet101 23.580 7.214 6.092 44.7M 42.7M [paper] [tf-models] [torch] [caffe]
ResNet152 23.396 6.882 5.908 60.4M 58.4M [paper] [tf-models] [torch] [caffe]
ResNet50V2 24.040 6.966 5.896 25.6M 23.6M [paper] [tf-models] [torch]
ResNet101V2 22.766 6.184 5.158 44.7M 42.6M [paper] [tf-models] [torch]
ResNet152V2 21.968 5.838 4.900 60.4M 58.3M [paper] [tf-models] [torch]
ResNeXt50 22.260 6.190 5.410 25.1M 23.0M [paper] [torch]
ResNeXt101 21.270 5.706 4.842 44.3M 42.3M [paper] [torch]
InceptionV3 22.102 6.280 5.038 23.9M 21.8M [paper] [tf-models]
InceptionResNetV2 19.744 4.748 3.962 55.9M 54.3M [paper] [tf-models]
Xception 20.994 5.548 4.738 22.9M 20.9M [paper]
MobileNet(alpha=0.25) 48.418 24.208 21.196 0.5M 0.2M [paper] [tf-models]
MobileNet(alpha=0.50) 35.708 14.376 12.180 1.3M 0.8M [paper] [tf-models]
MobileNet(alpha=0.75) 31.588 11.758 9.878 2.6M 1.8M [paper] [tf-models]
MobileNet(alpha=1.0) 29.576 10.496 8.774 4.3M 3.2M [paper] [tf-models]
MobileNetV2(alpha=0.35) 39.914 17.568 15.422 1.7M 0.4M [paper] [tf-models]
MobileNetV2(alpha=0.50) 34.806 13.938 11.976 2.0M 0.7M [paper] [tf-models]
MobileNetV2(alpha=0.75) 30.468 10.824 9.188 2.7M 1.4M [paper] [tf-models]
MobileNetV2(alpha=1.0) 28.664 9.858 8.322 3.5M 2.3M [paper] [tf-models]
MobileNetV2(alpha=1.3) 25.320 7.878 6.728 5.4M 3.8M [paper] [tf-models]
MobileNetV2(alpha=1.4) 24.770 7.578 6.518 6.2M 4.4M [paper] [tf-models]
DenseNet121 25.028 7.742 6.522 8.1M 7.0M [paper] [torch]
DenseNet169 23.824 6.824 5.860 14.3M 12.6M [paper] [torch]
DenseNet201 22.680 6.380 5.466 20.2M 18.3M [paper] [torch]
NASNetLarge 17.502 3.996 3.412 93.5M 84.9M [paper] [tf-models]
NASNetMobile 25.634 8.146 6.758 7.7M 4.3M [paper] [tf-models]
EfficientNet-B0 22.810 6.508 5.858 5.3M 4.0M [paper] [tf-tpu]
EfficientNet-B1 20.866 5.552 5.050 7.9M 6.6M [paper] [tf-tpu]
EfficientNet-B2 19.820 5.054 4.538 9.2M 7.8M [paper] [tf-tpu]
EfficientNet-B3 18.422 4.324 3.902 12.3M 10.8M [paper] [tf-tpu]
EfficientNet-B4 17.040 3.740 3.344 19.5M 17.7M [paper] [tf-tpu]
EfficientNet-B5 16.298 3.290 3.114 30.6M 28.5M [paper] [tf-tpu]
EfficientNet-B6 15.918 3.102 2.916 43.3M 41.0M [paper] [tf-tpu]
EfficientNet-B7 15.570 3.160 2.906 66.7M 64.1M [paper] [tf-tpu]

Reference

History

Copyright

原文:https://www.cnblogs.com/kezunlin/p/11980638.html

评论(0
© 2014 bubuko.com 版权所有 - 联系我们:wmxa8@hotmail.com
打开技术之扣,分享程序人生!