02-35 scikit-learn库之支持向量机

时间:2019-10-16 17:58:58   收藏:0   阅读:100

更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/

scikit-learn库之支持向量机

在scikit-learn库中针对数据是否线性可分,主要将支持向量机分为以下三种分类模型LinearSVCSVCNuSVC;还有三种回归模型LinearSVRSVRNuSVR

接下来将会讨论上述六者的区别,由于SVC应用场景较为广泛,主要细讲SVC,其他的只讲与SVC的区别。由于是从官方文档翻译而来,翻译会略有偏颇,有兴趣的也可以去scikit-learn官方文档查看https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm

一、SVC

1.1 使用场景

SVC模型基于较为灵活,既可以支持线性可分数据,又可以支持线性不可分数据的分类。

1.2 代码

import numpy as np
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
from sklearn.svm import SVC
clf = SVC(gamma='auto')
clf.fit(X, y) 
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
print(clf.predict([[-0.8, -1]]))
[1]
print(clf.fit_status_)
0

1.3 参数详解

1.4 属性

1.5 方法

二、LinearSVC

LinearSVC模型即普通的线性可分支持向量机,即对线性不可分的数据不能使用。因为该模型不需要调参,并且速度快,所以如果非常明确数据一定是线性可分的情况下可以使用该模型,否则模型准确度反倒会变得很低,。

三、NuSVC

NuSVC模型基于SVC模型,它增加了nu参数可以控制模型的错误率。

四、LinearSVR

LinearSVR限制了只能使用线性核函数,相比较于LinearSVM不同之处在于损失函数的度量,其中它的损失函数参数loss=‘epsilon_insensitive‘时,为类似于线性支持向量机的有松弛因子的损失度量,损失度量满足
\[ -\epsilon-\xi_i\geq{y_i}-\omega\phi(x_i)-b\leq\epsilon+\xi_i \]
而loss=‘squared_epsilon_insensitive‘,为少了松弛因子的损失度量方式,即损失度量满足
\[ ({y_i}-\omega\phi(x_i)-b)^2\leq\epsilon+\xi_i \]
一般情况下使用‘epsilon_insensitive‘足够了。

五、SVR

SVR模型相较于LinearSVR模型可以使用核函数,既可以对线性不可分数据做回归。

六、NuSVR

NuSVR模型相较于SVR模型,增加了nu参数可以控制模型的错误率。

原文:https://www.cnblogs.com/nickchen121/p/11686744.html

评论(0
© 2014 bubuko.com 版权所有 - 联系我们:wmxa8@hotmail.com
打开技术之扣,分享程序人生!