Example-based Machine Learning是什么?

时间:2019-10-07 00:14:26   收藏:0   阅读:148

参考:https://christophm.github.io/interpretable-ml-book/proto.html

EML简介

Example-based Machine Learning (EML) 是从数据集中选择特殊的样本来进行学习。下面看几个例子来理解:

上面例子遵循的一个原则是:如果B事件和A事件类似,而且A事件会导致Y事件发生,那么B事件也有可能让Y事件发生。

我们看看有哪些算法遵循上面的原则:

下面介绍各种EML算法。

Counterfactual Method

Counterfactual简单理解就是反事实(思考或解释)。人类经常会这样反事实的思考,例如我们一早坐下来,啜一口咖啡,然后就问自己,如果我生在南非而不是美国的话,生活会变成怎样,如果地球的轨道离太阳的距离缩短几干米,世界又会变成怎样。

例子

那如何应用到机器学习中去呢?假如你现在有一套房子出租,你已知房子面积(20平米),年龄(10年),位置(深山老林),家居情况,房子布局等情况,并基于这些信息构建了一个房租预测模型,结果预测为每个月只能租100元人民币,你觉得这怎么能行,这跟你心中的2000一个月相差甚远。于是你调整各种参数来看房租的变化,你把房子面积设置为100平米,结果预测为10000元每月,你看到结果后满心欢喜,但是很快认清了现实,因为这不可能。于是你微调房子布局,例如增大客厅面积,或者增设厨房,又或者换上土豪色的地板,这些微调都使得预测的房子涨到了你所期望的2000元每月。以上意淫就是所谓的反事实。

形式化表达

\[ L\left(x, x^{\prime}, y^{\prime}, \lambda\right)=\lambda \cdot\left(\hat{f}\left(x^{\prime}\right)-y^{\prime}\right)^{2}+d\left(x, x^{\prime}\right) \]

上面的\(x,x'\)分别表示真实数据值和反事实数据值,\(y'\)表示预期的输出,\(\hat{f}(x')\)表示模型对反事实数据的预测值。

第一项表示模型预测值和预期输出值之间的差距,简单理解就是你YY你的房子各种修改之后可能的房租和你心目中满意的房租的差距。

第二项表示反事实数据和真实值之间的距离,也就是说你YY的程度大小,如果你YY你的房子面积从20平米变成100平米,这会使得损失函数非常大,所以算法优化过程中会让你这个YY降低。

\(\lambda\)的作用就是在与预期值的接近程度YY的严重程度之间做平衡。当然这个值是很难选取的,所以另一种办法就是你自己设定一个阈值,例如,你希望房租是2000元每月,而且你也知道这很难,所以你觉得1500也还可以。该限制条件形式如下:

\[ \left|\hat{f}\left(x^{\prime}\right)-y^{\prime}\right| \leq \epsilon \]

最终优化表达式为:

\[ \arg \min _{x^{\prime}} \max _{\lambda} L\left(x, x^{\prime}, y^{\prime}, \lambda\right) \]

算法评价

优点:

缺点:

Adversarial Example(对抗样本)

Adversarial Example(AE)的作用和Counterfactual Example有点类似,只不过前者是用来对模型进行解释的,而AE是用来迷惑模型的,以此来加强模型的鲁棒性。AE其实也就是最近非常火爆的GAN算法,这里就不做过多介绍了。

Prototypes and Criticisms

Prototype是能够表示所有数据的数据实例,而Criticism则是不能由一组prototypes很好表示出来的数据实例,如下图所示:

技术分享图片

求解prototypes的方法有很多,很多聚类算法就可以实现这个,但是大都只能找到prototypes,不能找到criticism。所以下面介绍MMD-critic算法,该算法可以找到prototypes和criticism。

MMD-critic

该算法可以简单总结总如下:

技术分享图片





MARSGGBO?原创

如有意合作或学术讨论欢迎私戳联系~
微信:marsggbo
邮箱:marsggbo@foxmail.com






2019-10-06 18:21:35






?

原文:https://www.cnblogs.com/marsggbo/p/11628874.html

评论(0
© 2014 bubuko.com 版权所有 - 联系我们:wmxa8@hotmail.com
打开技术之扣,分享程序人生!