SparkSQL 编程
时间:2019-07-08 09:28:53
收藏:0
阅读:108
第 2 章 SparkSQL 编程
2.1 SparkSession 新的起始点
在老的版本中,SparkSQL 提供两种 SQL 查询起始点:一个叫 SQLContext,用于 Spark 自己
提供的 SQL 查询;一个叫 HiveContext,用于连接 Hive 的查询。
SparkSession 是 Spark 最新的 SQL 查询起始点,实质上是 SQLContext 和 HiveContext 的组
合,所以在 SQLContext 和 HiveContext 上可用的 API 在 SparkSession 上同样是可以使用的。
SparkSession 内部封装了 sparkContext,所以计算实际上是由 sparkContext 完成的。
2.2 DataFrame
2.2.1 创建
在 Spark SQL 中 SparkSession 是创建 DataFrame 和执行 SQL 的入口,创建 DataFrame 有三种
方式:通过 Spark 的数据源进行创建;从一个存在的 RDD 进行转换;还可以从 Hive Table 进行查
询返回。
1)从 Spark 数据源进行创建
(1)查看 Spark 数据源进行创建的文件格式
scala> spark.read.
csv format jdbc json load option options orc parquet schema table text textFile
(2)读取 json 文件创建 DataFrame
scala> val df = spark.read.json("/opt/module/spark/examples/src/main/resources/people.json") df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
(3)展示结果
scala> df.show +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+
2)从 RDD 进行转换
2.5 节我们专门讨论
3)从 Hive Table 进行查询返回
3.3 节我们专门讨论
2.2.2 SQL 风格语法(主要)
1)创建一个 DataFrame
scala> val df = spark.read.json("/opt/module/spark/examples/src/main/resources/people.json") df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
2)对 DataFrame 创建一个临时表
scala> df.createOrReplaceTempView("people")
3)通过 SQL 语句实现查询全表
scala> val sqlDF = spark.sql("SELECT * FROM people") sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
4)结果展示
scala> sqlDF.show +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+
注意:临时表是 Session 范围内的,Session 退出后,表就失效了。如果想应用范围内有效,可以
使用全局表。注意使用全局表时需要全路径访问,如:global_temp.people
5)对于 DataFrame 创建一个全局表
scala> df.createGlobalTempView("people")
6)通过 SQL 语句实现查询全表
scala> spark.sql("SELECT * FROM global_temp.people").show() +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| scala> spark.newSession().sql("SELECT * FROM global_temp.people").show() +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+
2.2.3 DSL 风格语法(次要)
1)创建一个 DataFrame
scala> val df = spark.read.json("/opt/module/spark/examples/src/main/resources/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
2)查看 DataFrame 的 Schema 信息
scala> df.printSchema root |-- age: long (nullable = true) |-- name: string (nullable = true)
3)只查看”name”列数据
scala> df.select("name").show() +-------+ | name| +-------+ |Michael| | Andy| | Justin| +-------+
4)查看”name”列数据以及”age+1”数据
scala> df.select($"name", $"age" + 1).show() +-------+---------+ | name|(age + 1)| +-------+---------+ |Michael| null| | Andy| 31| | Justin| 20| +-------+---------+
5)查看”age”大于”21”的数据
scala> df.filter($"age" > 21).show() +---+----+ |age|name| +---+----+ | 30|Andy| +---+----+
6)按照”age”分组,查看数据条数
scala> df.groupBy("age").count().show() +----+-----+ | age|count| +----+-----+ | 19| 1| |null| 1| | 30| 1| +----+-----+
测试:
scala> spark.read. csv jdbc load options parquet table textFile format json option orc schema text scala> spark.read.json("./examples/src/main/resources/people.json") res0: org.apache.spark.sql.DataFrame = [age: bigint, name: string] scala> res0.collect res1: Array[org.apache.spark.sql.Row] = Array([null,Michael], [30,Andy], [19,Justin]) scala> res0.show +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+ scala> res0.select("name").show +-------+ | name| +-------+ |Michael| | Andy| | Justin| +-------+ scala> res0.select("age","name").show +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+ scala> res0.select($"age"+1).show +---------+ |(age + 1)| +---------+ | null| | 31| | 20| +---------+ scala> res0.select($"age"+1,$"name").show +---------+-------+ |(age + 1)| name| +---------+-------+ | null|Michael| | 31| Andy| | 20| Justin| +---------+-------+ scala> res0.select($"name").show +-------+ | name| +-------+ |Michael| | Andy| | Justin| +-------+ scala> res0.first res9: org.apache.spark.sql.Row = [null,Michael] scala> res0.filter($"age">20).show +---+----+ |age|name| +---+----+ | 30|Andy| +---+----+ scala> res0.create createGlobalTempView createOrReplaceTempView createTempView scala> res0.createTempView("people") scala> spark.sql("select * from people").show +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+ scala> spark.sql("select * from people where age > 20").show +---+----+ |age|name| +---+----+ | 30|Andy| +---+----+
2.2.4 RDD 转换为 DateFrame
注意:如果需要 RDD 与 DF 或者 DS 之间操作,那么都需要引入 import spark.implicits._ 【spark
不是包名,而是 sparkSession 对象的名称】
前置条件:导入隐式转换并创建一个 RDD
scala> import spark.implicits._ import spark.implicits._
scala> val peopleRDD = sc.textFile("examples/src/main/resources/people.txt") peopleRDD: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[3] at textFile at <console>:27
1)通过手动确定转换
scala> peopleRDD.map{x=>val para = x.split(",");(para(0),para(1).trim.toInt)}.toDF("name","age") res1: org.apache.spark.sql.DataFrame = [name: string, age: int]
2)通过反射确定(需要用到样例类)
(1)创建一个样例类
scala> case class People(name:String, age:Int)
(2)根据样例类将 RDD 转换为 DataFrame
scala> peopleRDD.map{ x => val para = x.split(",");People(para(0),para(1).trim.toInt)}.toDF res2: org.apache.spark.sql.DataFrame = [name: string, age: int]
3)通过编程的方式(了解)
(1)导入所需的类型
scala> import org.apache.spark.sql.types._
import org.apache.spark.sql.types._
(2)创建 Schema
scala> val structType: StructType = StructType(StructField("name", StringType) :: StructField("age", IntegerType) :: Nil) structType: org.apache.spark.sql.types.StructType = StructType(StructField(name,StringType,true), StructField(age,IntegerType,true))
(3)导入所需的类型
scala> import org.apache.spark.sql.Row
import org.apache.spark.sql.Row
(4)根据给定的类型创建二元组 RDD
scala> val data = peopleRDD.map{ x => val para = x.split(",");Row(para(0),para(1).trim.toInt)} data: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[6] at map at <console>:33
(5)根据数据及给定的 schema 创建 DataFrame
scala> val dataFrame = spark.createDataFrame(data, structType) dataFrame: org.apache.spark.sql.DataFrame = [name: string, age: int]
2.2.5 DateFrame 转换为 RDD
直接调用 rdd 即可
1)创建一个 DataFrame
scala> val df = spark.read.json("/opt/module/spark/examples/src/main/resources/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
2)将 DataFrame 转换为 RDD
scala> val dfToRDD = df.rdd dfToRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[19] at rdd at <console>:29
3)打印 RDD
scala> dfToRDD.collect res13: Array[org.apache.spark.sql.Row] = Array([Michael, 29], [Andy, 30], [Justin, 19])
2.3 DataSet
Dataset 是具有强类型的数据集合,需要提供对应的类型信息。
2.3.1 创建
1)创建一个样例类
scala> case class Person(name: String, age: Long) defined class Person
2)创建 DataSet
scala> val caseClassDS = Seq(Person("Andy", 32)).toDS() caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
2.3.2 RDD 转换为 DataSet
SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataFrame,case 类定义了 table 的结构,
case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seqs 或者 Array 等复杂的结构。
1)创建一个 RDD
scala> val peopleRDD = sc.textFile("examples/src/main/resources/people.txt")
peopleRDD: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[3] at textFile at <console>:27
2)创建一个样例类
scala> case class Person(name: String, age: Long) defined class Person
3)将 RDD 转化为 DataSet
scala> peopleRDD.map(line => {val para = line.split(",");Person(para(0),para(1).trim.toInt)}).toDS res8: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
2.3.3 DataSet 转换为 RDD
调用 rdd 方法即可。
1)创建一个 DataSet
scala> val DS = Seq(Person("Andy", 32)).toDS() DS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
2)将 DataSet 转换为 RDD
scala> DS.rdd res11: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[15] at rdd at <console>:28
2.4 DataFrame 与 DataSet 的互操作
2.4.1 DataFrame 转 Dataset
1)创建一个 DateFrame
scala> val df = spark.read.json("examples/src/main/resources/people.json") df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
2)创建一个样例类
scala> case class Person(name: String, age: Long) defined class Person
3)将 DateFrame 转化为 DataSet
scala> df.as[Person] res14: org.apache.spark.sql.Dataset[Person] = [age: bigint, name: string]
这种方法就是在给出每一列的类型后,使用 as 方法,转成 Dataset,这在数据类型是 DataFrame 又
需 要 针 对 各 个 字 段 处 理 时 极 为 方 便 。 在 使 用 一 些 特 殊 的 操 作 时 , 一 定 要 加 上 import
spark.implicits._ 不然 toDF、toDS 无法使用。
2.4.2 Dataset 转 DataFrame
1)创建一个样例类
scala> case class Person(name: String, age: Long) defined class Person
2)创建 DataSet
scala> val ds = Seq(Person("Andy", 32)).toDS() ds: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
3)将 DataSet 转化为 DataFrame
scala> val df = ds.toDF df: org.apache.spark.sql.DataFrame = [name: string, age: bigint]
4)展示
scala> df.show +----+---+ |name|age| +----+---+ |Andy| 32| +----+---+
2.5 RDD、DataFrame、DataSet
在 SparkSQL 中 Spark 为我们提供了两个新的抽象,分别是 DataFrame 和 DataSet。他们和
RDD 有什么区别呢?首先从版本的产生上来看:
RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同
是的他们的执行效率和执行方式。
在后期的 Spark 版本中,DataSet 会逐步取代 RDD 和 DataFrame 成为唯一的 API 接口。
2.5.1 三者的共性
1、RDD、DataFrame、Dataset 全都是 spark 平台下的分布式弹性数据集,为处理超大型数据
提供便利
2、三者都有惰性机制,在进行创建、转换,如 map 方法时,不会立即执行,只有在遇到 Action
如 foreach 时,三者才会开始遍历运算。
3、三者都会根据 spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存
溢出
4、三者都有 partition 的概念
5、三者有许多共同的函数,如 filter,排序等
6、在对 DataFrame 和 Dataset 进行操作许多操作都需要这个包进行支持
import spark.implicits._
7、DataFrame 和 Dataset 均可使用模式匹配获取各个字段的值和类型
DataFrame:
testDF.map{ case Row(col1:String,col2:Int)=> println(col1);println(col2) col1 case _=> "" }
Dataset:
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段 名和类型 testDS.map{ case Coltest(col1:String,col2:Int)=> println(col1);println(col2) col1 case _=> "" }
2.5.2 三者的区别
1. RDD:
1)RDD 一般和 spark mlib 同时使用
2)RDD 不支持 sparksql 操作
2. DataFrame:
1)与 RDD 和 Dataset 不同,DataFrame 每一行的类型固定为 Row,每一列的值没法直接访
问,只有通过解析才能获取各个字段的值,如:
testDF.foreach{ line => val col1=line.getAs[String]("col1") val col2=line.getAs[String]("col2") }
2)DataFrame 与 Dataset 一般不与 spark mlib 同时使用
3)DataFrame 与 Dataset 均支持 sparksql 的操作,比如 select,groupby 之类,还能注册临时
表/视窗,进行 sql 语句操作,如:
dataDF.createOrReplaceTempView("tmp") spark.sql("select ROW,DATE from tmp where DATE is not null order by DATE").show(100,false)
4)DataFrame 与 Dataset 支持一些特别方便的保存方式,比如保存成 csv,可以带上表头,这
样每一列的字段名一目了然
//保存 val saveoptions = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://hadoop102:9000/test") datawDF.write.format("com.atguigu.spark.csv").mode(SaveMode.Overwrite).options(saveoptions).save()
//读取 val options = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://hadoop102:9000/test") val datarDF= spark.read.options(options).format("com.atguigu.spark.csv").load()
利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指
定。
3. Dataset:
1)Dataset 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。
2)DataFrame 也可以叫 Dataset[Row],每一行的类型是 Row,不解析,每一行究竟有哪些字
段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS 方法或者共性中的第七条提到
的模式匹配拿出特定字段。而 Dataset 中,每一行是什么类型是不一定的,在自定义了 case class
之后可以很自由的获得每一行的信息
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段 名和类型 /** rdd ("a", 1) ("b", 1) ("a", 1) **/ val test: Dataset[Coltest]=rdd.map{line=> Coltest(line._1,line._2) }.toDS test.map{ line=> println(line.col1) println(line.col2) }
可以看出,Dataset 在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性
很强的函数时,如果使用 Dataset,行的类型又不确定,可能是各种 case class,无法实现适配,这
时候用 DataFrame 即 Dataset[Row]就能比较好的解决问题
2.6 IDEA 创建 SparkSQL 程序
IDEA 中程序的打包和运行方式都和 SparkCore 类似,Maven 依赖中需要添加新的依赖项:
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.1.1</version> </dependency>
程序如下:
package com.lxl.sparksql
import org.apache.spark.sql.SparkSession import org.apache.spark.{SparkConf, SparkContext} import org.slf4j.LoggerFactory
object HelloWorld { def main(args: Array[String]) {
//创建 SparkConf()并设置 App 名称 val spark = SparkSession .builder() .appName("Spark SQL basic example") //.config("spark.some.config.option", "some-value") .getOrCreate()
//导入隐式转换 import spark.implicits._
//读取本地文件,创建 DataFrame val df = spark.read.json("examples/src/main/resources/people.json")
//打印 df.show()
//DSL 风格:查询年龄在 21 岁以上的 df.filter($"age" > 21).show()
//创建临时表 df.createOrReplaceTempView("persons")
//SQL 风格:查询年龄在 21 岁以上的 spark.sql("SELECT * FROM persons where age > 21").show()
//关闭连接 spark.stop() } }
测试:
import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SparkSession object HelloWorld { def main(args: Array[String]): Unit = { //获取sparkConf val conf = new SparkConf().setAppName("HelloWorld").setMaster("local[*]") //创建sparkcontext对象 val sc = new SparkContext(conf) //获取sparkSession // val spark = new SparkSession(sc) val spark = SparkSession.builder().config(conf).getOrCreate() //生成DataFrame val df = spark.read.json("D:\\Data\\Spark\\课堂\\people.json") //展示所有数据 df.show() //DSL df.select("name").show() //SQL df.createTempView("people") spark.sql("select * from people").show() //关闭资源 spark.close() sc.stop() } }
结果:
+----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+ +-------+ | name| +-------+ |Michael| | Andy| | Justin| +-------+ +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+
原文:https://www.cnblogs.com/LXL616/p/11149053.html
评论(0)