【366】通过 python 求解 QP 问题

时间:2019-02-03 13:27:51   收藏:0   阅读:1323

参考: 9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题

参考: Quadratic Programming - Official website

步骤如下:

1、二次规划问题的标准形式

技术分享图片

上式中,x为所要求解的列向量,xT表示x的转置

接下来,按步骤对上式进行相关说明:

2、以一个标准的例子进行过程说明

技术分享图片

例子中,需要求解的是x,y,我们可以把它写成向量的形式,同时,也需要将限制条件按照上述标准形式进行调整,用矩阵形式表示,如下所示:

技术分享图片

技术分享图片

接下来就是几行简单的代码,目的是告诉计算机上面的参数具体是什么

from cvxopt  import solvers, matrix 
P = matrix([[1.0,0.0],[0.0,0.0]])   # matrix里区分int和double,所以数字后面都需要加小数点
q = matrix([3.0,4.0])
G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]])
h = matrix([0.0,0.0,-15.0,100.0,80.0])

sol = solvers.qp(P,q,G,h)   # 调用优化函数solvers.qp求解
print sol[‘x‘]  # 打印结果,sol里面还有很多其他属性,读者可以自行了解

    pcost       dcost       gap    pres   dres
 0:  1.0780e+02 -7.6366e+02  9e+02  1e-16  4e+01
 1:  9.3245e+01  9.7637e+00  8e+01  1e-16  3e+00
 2:  6.7311e+01  3.2553e+01  3e+01  6e-17  1e+00
 3:  2.6071e+01  1.5068e+01  1e+01  2e-16  7e-01
 4:  3.7092e+01  2.3152e+01  1e+01  2e-16  4e-01
 5:  2.5352e+01  1.8652e+01  7e+00  8e-17  3e-16
 6:  2.0062e+01  1.9974e+01  9e-02  6e-17  3e-16
 7:  2.0001e+01  2.0000e+01  9e-04  6e-17  3e-16
 8:  2.0000e+01  2.0000e+01  9e-06  9e-17  2e-16
Optimal solution found.
[ 7.13e-07]
[ 5.00e+00]

扩展:上述定义各个矩阵参数用的是最直接的方式,其实也可以结合Numpy来定义上述矩阵

from cvxopt import solvers, matrix
import numpy as np

P = matrix(np.diag([1.0,0]))  #  对于一些特殊矩阵,用numpy创建会方便很多(在本例中可能感受不大)
q = matrix(np.array([3.0,4]))
G = matrix(np.array([[-1.0,0],[0,-1],[-1,-3],[2,5],[3,4]]))
h = matrix(np.array([0.0,0,-15,100,80]))
sol = solvers.qp(P,q,G,h)

     pcost       dcost       gap    pres   dres
 0:  1.0780e+02 -7.6366e+02  9e+02  1e-16  4e+01
 1:  9.3245e+01  9.7637e+00  8e+01  1e-16  3e+00
 2:  6.7311e+01  3.2553e+01  3e+01  6e-17  1e+00
 3:  2.6071e+01  1.5068e+01  1e+01  2e-16  7e-01
 4:  3.7092e+01  2.3152e+01  1e+01  2e-16  4e-01
 5:  2.5352e+01  1.8652e+01  7e+00  8e-17  3e-16
 6:  2.0062e+01  1.9974e+01  9e-02  6e-17  3e-16
 7:  2.0001e+01  2.0000e+01  9e-04  6e-17  3e-16
 8:  2.0000e+01  2.0000e+01  9e-06  9e-17  2e-16
Optimal solution found.

  

原文:https://www.cnblogs.com/alex-bn-lee/p/10350205.html

评论(0
© 2014 bubuko.com 版权所有 - 联系我们:wmxa8@hotmail.com
打开技术之扣,分享程序人生!