Codeforces 392C Yet Another Number Sequence(矩阵快速幂)
时间:2014-02-21 13:00:28
收藏:0
阅读:436
题目链接:Codeforces 392C Yet Another Number Sequence
题目大意:给出n和k,表示一个序列A[i],求前n项A[i]的和,结果可以% 1e9+7。
A[i] = i^k * F[i],F[i] = F[i-1] + F[i-2](斐波那契数列)。
解题思路:首先(i+1)^k = C(k,k) * i ^ k + C(k, k-1) * i ^ (k-1) ......... + C(k, 0) * i ^ 0.
那么定义u(n+1,k) = (n+1) ^ k * F(n+1), v(n+1, k) = (n+1) ^ k * F(n).
u(n+1, k) = (n+1)^k * F(n+1) = (n+1)^k * F(n) + (n+1)^k * F(n-1)
= ∑[1,k] C(k, i) * n^i * F(n) + ∑[1,k] C(k,i) * n^i * F(n-1) = ∑[1,k] C(k,i) * u(n, i) + ∑[1,k] C(k,i) * v(n, i);
v(n+1, k) = (n+1)^k * F(n) = ∑[1,k] C(k, i) * n^i * F(n) = ∑[1,k] C(k, i) * u(n, i);
s[n] = s[n-1] + u(n, k);
#include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; typedef long long ll; const int N = 90; const int M = 50; const ll mod = 1e9+7; struct mat { ll a[N][N]; mat() { memset(a, 0, sizeof(a)); } }; int n, k; ll s, c[M][M]; void init () { cin >> s >> k; n = k * 2 + 3; for (int i = 0; i <= k; i++) { c[i][0] = c[i][i] = 1;; for (int j = 1; j < i; j++) c[i][j] = c[i-1][j-1] + c[i-1][j]; } } mat mul(mat p, mat q) { mat ans; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int t = 0; t < n; t++) { ans.a[i][j] += p.a[i][t]*q.a[t][j]; ans.a[i][j] %= mod; } } } return ans; } mat Qpow(mat base, ll t) { mat x; for (int i = 0; i < n; i++) x.a[i][i] = 1; while (t) { if (t&1) x = mul(x, base); base = mul(base, base); t /= 2; } return x; } int main () { init(); mat base; for (int i = 0; i <= k; i++) { for (int j = 0; j <= i; j++) { base.a[i][j] = base.a[i+k+1][j] = base.a[i][j+k+1] = c[i][j]; } } base.a[2*k+2][k] = base.a[2*k+2][2*k+2] = 1; mat ans = Qpow(base, s); ll g = 0; for (int i = 0; i < 2*k+2; i++) { g = (g + ans.a[2*k+2][i]) % mod; } cout << g << endl; return 0; }
原文:http://blog.csdn.net/keshuai19940722/article/details/19573681
评论(0)